METROGY

INSTRUMENT

Technical features

- The machine reference table and Z-axis column material are made of natural granite, the structure is not deformed, and the performance is more stable and reliable
- The use of X-direction and Z1-direction high-precision grating sensors improves the degree of automation and realizes the measurement function that the sensors can automatically contact
- The key components adopt special stress-relief alloy materials and special stress-relief treatment process, and the durability and accuracy are kept longer.

Structure Diagram

METRULOGY

Contour & Roughness Measuring Instrument

Measuring principle

Contour measurement: The measuring principle of this instrument is the rectangular coordinate measuring method ,through X-axis, Z-axis sensor, mapping the surface contour coordinates point of the part under test, data transmission the coordinates point to the upper PC by electrical components.

To do the mathematical treatment on the original collected coordinate data by software, marked with the required engineering survey projects.

Roughness measurement: Using differential inductive roughness sensor, it is an advanced and high-sensitivity induction coil technology and structure design. It still has extremely high linearity accuracy in a wide range of measurements. the measuring device uses a design technology without a guide and uses a precision slideway as the measurement benchmark. , only the residual value of the contour is less than 0.005µm, and the measurement accuracy is high.

In addition to measuring the absolute position of the surface roughness of the part, it also has an advantage and outstanding measurement ability when measuring the roughness of the inclined surface and arc.

Measuring function

Contour measurement:

Size: contains the horizontal distance, vertical distance, linear distance, radius and diameter Angle: horizontal angle and vertical angle, Angle

Position tolerance: contains the parallelism and perpendicularity

Shape tolerance: contains the straightness, crown, circular arc profile

Auxiliary generation: contains the auxiliary point, auxiliary line, auxiliary circle Roughness measurement:

Roughness function : Ra Rp Rv Rz Rz (jis) R3z RzDIN Rzj Rmax Rc Rt Rq Rsk Rku Rsm Rs Rq Rk Rpk Rvk Mr1 Mr2 RmrWaviness parameter : Wa Wt Wp Wv Wz Wq Wsm Wsk Wku WmrOriginal contour parameters : Pa Pt Pp Pv Pz Pq Psm Psk Pku Pmr

Software function

- X and Z1 adopt electronic digital sensors, with large measuring range, high precision and strong repeatability
- Large range design, lever ratio is only 1:2.2, maintaining the original accuracy of the sensor
- Adopt high-speed data acquisition unit, hardware trigger and high-speed sampling, no delay, the calculation processing system provides the most powerful guarantee
- High rigidity, high precision linear guide, high precision digital linear sensor
- The software supports Chinese, English, and supports XP, win7, win8, win10 systems
- It has the functions of stylus automatic contact, automatic lifting and automatic retraction, which can capture the starting point and the end point, and can set the movement speed according to the needs

	×
全域設置 ☑ 合供测量結果 操作範本 指令规型	
例針抱起 例封放下 自動接端 测量 指令参数 抬起量 mm	春 移動 回到起點 增加指令

METRULOGY

Contour Measuring Software functions

The length of the right lever is up to 280mm. When the measurement of the same height is achieved, the swing angle is small, so as to avoid the interference between the components on the surface of the part and the measuring rod

The marking method is the same as CAD, which is convenient and easy to learn. The measurement length, sampling speed and sampling interval can be set freely.

Measure Sample F	±5mm v	
Trav Lth	mm	
Speed	© 0.2 ○ 0.5 ○ Custom mm	/
Inv.	© Corr ◯ 1 ◯ Custom 🛛 µm	
ſ	н н К бо-	

- Automatic identification of arcs and lines, point or frame selection for fitting
- The original data is automatically saved, which is convenient for multiple annotations, and supports free rotation of graphics and free rotation of coordinates
- Unnecessary feature points can be set in the feature point capture area to facilitate user's choice
- Support dimension, horizontal, vertical, linear, continuous, reference line, angle, arc, coordinate point, straightness, curve profile, peak value, arc area, verticality, etc.
- The software is equipped with quick keys to facilitate quick operation of the annotation of geometric element measurement

• Support collapsing the menu and control area to expand the effective area of the drawing area

Under non-proportionally enlarged state, normal angle, arc, horizontal, vertical, linear, etc. can also be marked

With unique features such as automatic labeling, intermittent measurement, data merge and other features (Z25 does not have this function)

Technical specifications

l	tem	CMI-Z25	CMI-Z40	CMI-Z60				
	X-axis	120mm						
Measuring	Z1-axis	25mm	40mm	60mm				
Tunge	Z-axis	420mm						
	Straightness	0.8µm/100mm	0.5µm/	′100mm				
	X-axis	±(3.0+0.02L)μm	±(3.0+0.02L)μm ±(1.5+0.025L)μm					
Indication	Z1-axis	±(1.5+ 0.2H)μm	±(0.8+ 0).15H)μm				
accuracy	Arc	±(2+R/8)μm	±(1.5+R/12)μm					
	Angle	±2′	±1′					
Detection	X-axis	0.2µm sensor	0.2µm Electronic digital sensor					
method	Z1-axis	0.05µm sensor	0.05µm Electronic digital sensor					
	X-axis	0.1-10mm/S	0.05-1	5mm/S				
Drive	Z-axis	0.5-10mm/S	0.2-15	5mm/S				
speed	Z1-axis		0.1 · 0.2 · 0.5 · 1mm/s	S				
Drive	X-axis	Fleetric (Liltre		and linear alida)				
mode	Z-axis	Electric (Ultra c	fulet stepping motor a	and linear slide)				

Device Configuration

Part Name	Item	Quantity	Remarks			
	Basic Workbench	1	DIN00 grade granite			
	Column subsystem	1	High precision linear slide and electric stepper motor drive			
Host	Horizontal system	1	High precision linear slide and electric stepper motor drive			
	High precision guide system	1	British Renishaw raster count			
	Swing arm system	1	Leverage ratio is 1:2.2, effectively ensuring the accuracy of the sensor			
	Motion Control System	1	Integrated controller			
Calculus	computer	1	Standard PC system equipment			
system	software	1	English contour measurement software			
	Stylus	1	Φ 4*32mm single cut surface 17°			
Accessories	Three-way adjustment table	1	Y direction ± 6 mm tilt $-3^{\circ} \sim 60^{\circ}$ rotation $\pm 10^{\circ}$			
	Precision sinus flat vise	1	Clamping length 60mm, adjusting angle 0° ~45°			

Contour & Roughness Measuring Instrument(2 in 1 model)

Roughness Measuring Software functions

Roughness Measuring interface

Curve display setting

P Curve: Display contour curve in the drawing area

R Curve: Display the roughness curve in the drawing area

Raw Data: The acquired raw data curve is displayed in the drawing area.

Cutoff value and roughness parameter value comparison table

	Arithmetic m Ra	ean	Maximum height Ry	Ten point average Rz	Ry · Rz Reference length	Processing symbol	
Parameter value	Cutoff value	Roughness symbol	Parame	ter value	£ (mm)		
0.012 a	0.08		0.05 s	0.05 z	0.08		
0.025 a	0.25	000 / 00 /	0.1 s	0.1 z	0.00		
0.05 a	0.25 $0.012 \sim 0.2$ 0.2 s		0.2 z	0.25			
0.1 a			0.4 s	0.4 Z	0.20		
0.4 a 0.8 a 1.6 a	0.8	04/~16/	1.6 s 3.2 s 6.3 s	1.6 z 3.2 z 6.3 z	0.8		
3.2 a 6.3 a	2.5	32/~63/	12.5 s 25 s	12.5 z 25 z	2.5	$\nabla \nabla$	
12.5 a		12.5 / ~ 25/	50 s	50 z			
25 a	8	\forall \forall	100 s	100 z	8		
50 a		50/~ 100/	200 s	200 z	U	~	
100 a	-		400 s	400 z	-		

Data output function

Display Current Results						X(mm)									Rmr(%)	
Ra	0.0152µm	Rp	0.0559µm	Rv	0.0539µm	Rz	0.1099µm	Rz(jis)	0.1039µm	R3z	0.0626µm	RZDIN	0.1099µm	λο	0.8mm	
Rmax	0.1170µm	Re	0.0290µm	Rt	0.1211µm	Rq	0.0188µm	Rsk	0.0560µm	Rku	2.6452µm	RSm	10.8158µm	Speed	0.25mm/s	
Rs	4.8605µm	R4q	0.2533µm	Rk	0.0621µm	Rpk	0.0325µm	Rvk	0.0290µm	Mr1	6.7568%	Mr2	96.2447%	Filter	Gaussian	
RzJ	0.0000µm													Sample	Tim2018-08-22 08:55:1	

Display statistical report

Ra	Rp	Rv	Rz	Rz(jis)	R3z	RzDIN	Rmax	Rc	Rt	Rq	Rsk	Rku	RSm	Rs	R+q	Rk	Rpk	Rvk	Mr1	Mr2	Rzl	λc	Speed	Filter	Sample 1
1.5995	2.0144	1.8517	3.8661	3,8521	3.6016	3.8661	4.0664	3.579	4.1446	1.6445	0.0523	1.1105	71.2642	6.4827	5.6244	3.6251	-0.1591	0.6439	0	54.9116	0	0.8	0.25	Gaussian	08-25 09
1.3978	1.7382	1.5977	3.3359	3.3225	3.0997	3.3359	3.4883	3.1038	3.6115	1.4362	0.0596	1.1058	71.3087	6.1975	0.976	3.2077	-0.1462	0.523	0	55.3976	0	0.8	0.25	Gaussian	08-25 09
1.3872	1.7262	1.6571	3.3833	3.3532	3.0999	3.3833	3.4104	3.1014	3.5121	1.4261	0.0443	1.1091	71.4451	4.9784	0.4632	3.1179	-0.0887	0.5762	0	55.1869	0	0.8	0.1	Gaussian	08-25 09
1.3763	1.7295	1.6191	3.3486	3.3363	3.059	3.3486	3.5839	3.0719	3.6039	1.4149	0.0104	1.1098	70.7964	6.0476	0.5069	2.8798	0.0143	0.689	0	54.5494	0	0.8	0.25	Gaussian	-08-25 09:
0.0152	0.0559	0.0539	0.1099	0.1039	0.0626	0.1099	0.117	0.029	0.1211	0.0188	0.056	2.6452	10.8158	4.8605	0.2533	0.0621	0.0325	0.029	6.7568	96.2447	0	0.8	0.25	Gaussian	08-22 08

nmum 0.0152 0.0559 0.0539 0.1069 0.1039 0.0626 0.1099 0.117 0.029 0.1211 0.0188 0.0104 1.1058 10.8158 4.8605 0.2513 0.0621 -0.1591 0.029 0 54.5494
merage 1.1552 1.4578 1.3559 2.8088 2.7936 2.5846 2.8088 2.9312 2.577 2.9986 1.1881 0.0445 1.4161 59.126 5.7133 1.5648 2.5785 -0.0694 0.4922 1.1514 0.3258

INSTRUMENT

METROLOGY

Contour & Roughness Measuring Instrument(2 in 1 model)

Contour & Roughness Technical specifications

Ite	em / Model NO.	CMI-Z30R	CMI-Z60R				
	X-axis Measuring range	120mm	150mm				
	X-axis Resolution	0.2µm					
	Z1 Measuring range	30mm	60mm				
	Z1 Resolution	0.05µm					
Contour parameters	Z-axis	measuring range 420mm (electric)					
	Z1 accuracy ¹	± (1.5 + 0.2H) μm	\pm (0.8+ 0.15H) μm				
	Arc ²	± (2+R/8) μm	± (1.5+R/12) μm				
	angle ³	±2'	±1'				
	Straightness	0.8µm/100mm	0.5µm/100mm				
	accuracy	≤±(7nm±3.5%)	≤±(5nm±3%)				
	Residual noise	No guide ≤0.025µm	No guide ≤0.005µm				
	Repeatability	1δ≤2nm	1δ≤1nm				
Roughness parameter	Cutoff wavelength	0.025 \ 0.08 \ 0.25 \ 0.8 \ 2.5 \ 8					
	Evaluation length	λc X1 · 2 · 3	8 • 4 • 5 • 6 • 7				
	Z1 Measuring range	±420µm	±620µm				
	Z1 Resolution	65536:1	262144:1				
	X-axis Drive method	elec	etric				
sport	Z-axis Drive method	elec	etric				
control	X-axis Drive speed	0.1~10mm/s	0.05~15mm/s				
	Z-axis Drive speed	0.5-10mm/s	0.2-15mm/s				

Remarks:

1. H is the measuring height on the horizontal position

2. For standard balls with 2mm < R < 10mm, the sampling arc angle is 120°

3. Angle block of 60° and 90°, the sampling length of the corner edge is 5mm

4. The specifications of the above measurement range can be customized and upgraded according to requirements

METRULOGY

Contour & Roughness Measuring Instrument(2 in 1 model)

Standard accessories

Machine: All-in-one-piece ergonomic machine with granite base, specification: 500*800 mmColumn: Max. moving speed: 20 mm/S Min. moving speed: 0.2 mm/s Positioning accuracy: 0.005 mmSensor: Linear accuracy: $\pm (0.7+|0.05\text{H}|)\mu\text{m}$ Measuring force: 1.2g Roughness sensor without guide Precision sine platform: jaw width 50 mm, jaw depth 25 mm, opening 60 mm, adjustment angle 0.45° Precision table: Size: 150*225*110 mm Y : $\pm 6 \text{mm}$ Rotation: $\pm 15^{\circ}$ Inclination angle: $-10^{\circ} \sim 60^{\circ}(Z60\text{R})$ Standard table: Size: 150*150*86 mm Y : $\pm 6 \text{mm}$ Rotation: $\pm 10^{\circ}$ Inclination angle: $-3^{\circ} \sim 60^{\circ}(Z30\text{R})$ Contour measuring rod: Material: carbon fiber Diameter: 8 mm Length: 200 mmContour Single section stylus: Diameter: 4 mm Length: 32 mm Angle: 17° Tip: $25 \mu\text{m}$ Roughness standard measuring rod: Diameter: 3 mm Length: 90 mmRoughness stylus: Diameter: 1 mm Length: 12 mm Angle: 60° Tip: $5 \mu\text{m}$

Part name	Name	Quantity	Remarks
	Basic workbench	1	DIN00 grade granite
	Column system	1	High-precision linear slide and electric stepper motor drive
Main	Horizontal system	1	High-precision linear slide and electric stepper motor drive
machine	High-precision slide system	1	Renishaw scale
	Swing arm system	1	The leverage ratio is 1:2.2, which effectively guarantees the accuracy of the sensor
	Motion Control System	1	Integrated controller
	computer	1	Standard PC system equipment
system	software	1	Two-in-one measurement software for surface roughness and contour in Chinese and English

Equipment size

Lx*Ly*Lz : 1400*850*1780mm Main machine weight ; 350 kg

Environmental conditions

Vibration source: no large vibration source Power supply: AC 110-220V±10% 50Hz

Temperature: On-site storage temperature: 15°C–35°C

The best operating temperature is $20\pm2^{\circ}$ C Relative humidity: less than 60%